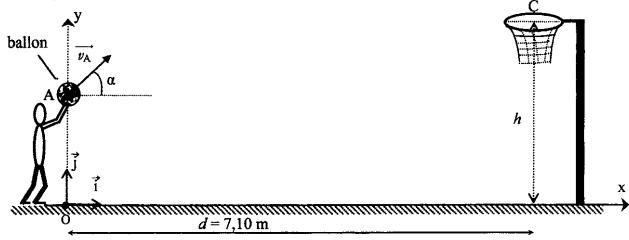
BACCALAURÉAT SESSION 2016

Coefficient: 4
Durée: 3 h

PHYSIQUE-CHIMIE

SÉRIE: D

Cette épreuve comporte quatre (04) pages numérotées 1/4, 2/4, 3/4 et 4/4. Le candidat recevra une (01) feuille de papier millimétré. La calculatrice scientifique est autorisée.

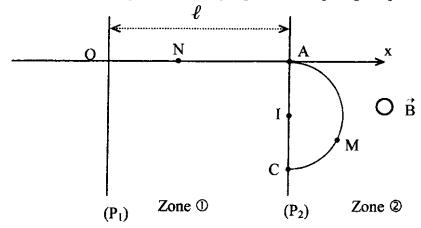

EXERCICE 1 (5 points)

Dans tout l'exercice, on néglige les frottements dus à l'air et on considère le ballon comme un point matériel de masse m.

Lors d'un match de basket-ball, pour marquer un panier, il faut que le ballon passe dans un anneau (ou arceau) métallique. L'anneau métallique de centre C est situé dans un plan horizontal, à une hauteur h = 3,05 m du sol. Le centre d'inertie A du ballon et le point central C de l'anneau sont dans le plan vertical (OX, OY).

1- Un basketteur lance le ballon à partir d'un point A, avec une vitesse $\vec{v_A}$ faisant un angle $\alpha = 45^{\circ}$ avec le plan horizontal. Le point A est situé à une hauteur OA = 2 m du sol (voir figure ci-dessous). L'origine du temps sera l'instant du lancé du ballon à partir du point A.

On donne : $g = 10 \text{ m.s}^{-2}$.


- 1.1 Faire l'inventaire des forces extérieures s'exerçant sur le ballon.
- 1.2 Établir dans le repère $(0, \vec{1}, \vec{j})$ les équations horaires x(t) et y(t) du mouvement du centre d'inertie du ballon.
- 1.3 Montrer que l'équation cartésienne de la trajectoire s'écrit : $y = -\frac{10}{v_{\perp}^2} x^2 + x + 2$.
- 1.4 Les verticales passant par les points A et C sont distantes de d = 7,10 m.
 - 1.4.1. Vérifier que la valeur que doit avoir $\vec{v_{\rm A}}$ pour que le panier soit réussi est de 9,1m.s⁻¹.
 - 1.4.2. Déterminer le temps t mis par le ballon pour aller du point A au point C.
- 2- Un adversaire situé à une distance $d_1 = 4,1$ m du tireur veut arrêter le ballon.
 - 2.1 Montrer que cet adversaire se trouve dans la position la plus défavorable pour intercepter le ballon, c'est-à-dire celle qui correspond à l'abscisse du sommet de la trajectoire.
 - 2.2 L'adversaire saute verticalement en levant les bras. La hauteur atteinte par ses mains est $h_1 = 3$ m. Les valeurs de $\vec{v_A}$ et de α restent inchangées. Dire si l'adversaire peut intercepter le ballon. Justifier la réponse.

EXERCICE 2 (5 points)

Dans tout l'exercice on négligera le poids du proton devant les autres forces.

Dans un laboratoire, un professeur de Physique-Chimie étudie le mouvement d'un proton dans un dispositif comportant deux zones notées ① et ② (voir figure).

La zone ① est délimitée par deux plaques verticales et parallèles (P_1) et (P_2) distantes d'une longueur ℓ . La zone ② s'étend au-delà de la plaque (P_2) . Il y règne un champ magnétique uniforme \overrightarrow{B} .

1- Étude du mouvement du proton entre les plaques (P₁) et (P₂).

Le professeur applique une différence de potentiel positive $V_{P1} - V_{P2} = U$ entre les deux plaques.

Un proton de masse m_P part du point O sans vitesse initiale et arrive au point A avec une vitesse $\overrightarrow{v_A}$.

- 1.1 Représenter qualitativement au point N, le champ électrique \vec{E} et la force électrique \vec{F} s'exerçant sur le proton. Justifier la réponse.
- 1.2 Établir l'expression de l'énergie cinétique E_{CA} du proton au point A en fonction de e et U.
- 1.3 Vérifier que la valeur de la vitesse du proton au point A de la plaque (P₂) vaut $v_A = 3.71.10^5$ m.s⁻¹.
- 1.4 Déterminer la nature du mouvement du proton dans la zone ①.
- 1.5 En déduire le rôle du champ E dans cette zone.
- 2. Étude du mouvement du proton au-delà de la plaque (P2).

Au-delà de la plaque (P_2) , le proton entre dans la zone @. Il est alors soumis au champ magnétique uniforme \overrightarrow{B} orthogonal à la vitesse $\overrightarrow{v_A}$.

- 2.1 Donner l'expression de la force magnétique \vec{f} s'exerçant sur le proton.
- 2.2 Représenter sur un schéma :
 - 2.2.1 la force magnétique f au point M;
 - 2.2.2 le vecteur champ magnétique \vec{B} .
- 2.3 Déterminer la puissance de cette force magnétique.
- 2.4
- 2.4.1 Montrer que la force magnétique f ne modifie pas l'énergie cinétique du proton.
- 2.4.2 En déduire la valeur v_C de la vitesse du proton au point C.
- 2.5 En déduire que le mouvement circulaire du proton est uniforme.
- 2.6 Le proton traverse à nouveau la plaque (P_2) en un point C. (Voir figure ci-dessus) Donner l'expression du rayon R de la trajectoire. Calculer la distance AC. On donne : $m_P = 1,67.10^{-27}$ kg; $e = 1,6.10^{-19}$ C; U = 720 V; B = 0,6 T.

EXERCICE 3 (5 points)

Lors d'une séance de travaux pratiques, un groupe d'élèves doit déterminer le pKa du couple CH_3COOH/CH_3COO^- . Pour ce faire, le groupe prélève un volume $V_A = 10 \text{ mL}$ de cet acide qu'il dose par une solution aqueuse d'hydroxyde de sodium de concentration $C_B = 10^{-2} \text{ mol/L}$.

Il mesure le pH de la solution en fonction du volume V_B de la solution d'hydroxyde de sodium versée.

1- La courbe $pH = f(V_B)$ donne les points caractéristiques suivants :

Demi-équivalence E'
$$\begin{cases} V_{E'} = 5 \text{ mL} \\ pH_{E'} = 4,8 \end{cases}$$

$$\text{Équivalence E} \begin{cases} V_{E} = 10 \text{ mL} \\ pH_{E} = 8,6 \end{cases}$$

- 1.1 Donner l'allure de la courbe $pH = f(V_B)$ en indiquant les points caractéristiques E'et E. On donne : pour $V_B = 0$, pH = 3,4.
- 1.2 Montrer que l'acide éthanoïque est un acide faible.
- 1.3 Écrire l'équation-bilan de la réaction du dosage.
- 1.4 Calculer la concentration molaire C_A de la solution AH.
- 1.5 Nommer le mélange obtenu à la demi-équivalence et donner ses caractéristiques.
- 1.6 Donner le pKA du couple acide-base considéré.
- On dispose de trois indicateurs colorés.

	Zone de virage
Hélianthine	3,1 - 4,4
Bleu de bromothymol	6 - 7,6
Phénolphtaléine	8,2 – 10

Pour le dosage, le groupe a utilisé la phénolphtaléine. Justifier ce choix.

- 3- Par ailleurs à partir de la solution initiale d'acide éthanoïque de pH = 3,4 et de concentration molaire volumique $C_A = 10^{-2}$ mol.L⁻¹, le groupe désire retrouver la valeur du pK_A.
 - 3.1 Écrire l'équation-bilan de la réaction chimique entre l'acide éthanoïque et l'eau.
 - 3.2 Faire l'inventaire des espèces chimiques présentes dans la solution.
 - 3.3 Calculer la concentration molaire volumique de chacune des espèces chimiques.
 - 3.4 Retrouver la valeur du pK_A.

EXERCICE 4 (5 points)

- 1- Un chimiste veut déterminer la formule brute d'un alcool A de formule générale C_nH_{2n+2}O. Pour cela il réalise la combustion complète d'une masse m = 6 g de cet alcool dans le dioxygène. Il recueille 6,72 L de dioxyde de carbone (volume mesuré dans les conditions normales de température et de pression).
 - 1.1 Écrire l'équation-bilan de la réaction.
 - 1.2 Montrer que la formule brute de l'alcool A est C₃H₈O.
 - 1.3 Donner les formules semi-développées des isomères possibles de l'alcool A et les nommer.

- 2- Pour identifier le composé A, il réalise son oxydation ménagée par un oxydant en excès en milieu acide. Il obtient un composé B.
 - 2.1 Donner les formules semi-développées possibles de B et les familles chimiques correspondantes.
 - 2.2 Le composé B fait virer le bleu de bromothymol au jaune.
 - 2.2.1. Identifier le composé B.
 - 2.2.2. En déduire la formule semi-développée et le nom de l'alcool A.
- 3- L'action du chlorure de thionyle sur l'acide propanoïque donne un composé C.
 - 3.1 Écrire l'équation-bilan de la réaction.
 - 3.2 Donner la formule semi-développée et le nom de C.
- 4- On fait réagir de l'ammoniac (NH₃) sur le composé C et on obtient un composé D.
 - 4.1 Donner la formule semi-développée et le nom de D.
 - 4.2 L'action du composé C sur l'alcool A conduit à un produit E.
 - 4.2.1. Écrire l'équation-bilan de cette réaction.
 - 4.2.2. Donner la formule semi-développée et le nom de E.
 - 4.2.3. Donner les caractéristiques de cette réaction.

On donne : volume molaire $V_0 = 22,4$ L/mol ; $M_C = 12$ g/mol ; $M_H = 1$ g/mol ; $M_O = 16$ g/mol.