BACCALAUREAT SESSION 2007

Coefficient: 4

Durée: 4 h

MATHEMATIQUES

SERIE: D

Cette épreuve comporte trois pages numérotées 1/3, 2/3 et 3/3. Chaque candidat recevra deux (02) feuilles de papier millimétré. Toute calculatrice est autorisée.

EXERCICE 1

On considère les suites (U_n) et (V_n) définies par $U_0 = 4$ et $V_0 = 9$ et pour tout entier naturel n :

$$U_{n+1} = \frac{2U_n V_n}{U_n + V_n}$$
 et $V_{n+1} = \frac{1}{2} (U_n + V_n)$

- 1. Démontrer par récurrence que pour tout entier naturel n, $U_n > 0$ et $V_n > 0$.
- 2. a) Démontrer que : $\forall n \in \mathbb{N}, \quad V_{n+1} U_{n+1} = \frac{(V_n U_n)^2}{2(U_n + V_n)}$
 - b) En déduire que : \forall $n \in \mathbb{N}$, $U_n \leq V_n$ et que : $V_{n+1} U_{n+1} \leq \frac{1}{2}(V_n U_n)$.
 - c) En déduire que : \forall n \in IN, $V_n U_n \le \frac{5}{2^n}$.
- 3. a) Démontrer que la suite (U,) est croissante et que la suite (V,) est décroissante.
 - b) En déduire que les suites (U,) et (V,) convergent.
 - c) Démontrer que les suites (U_n) et (V_n) ont la même limite ℓ .
- 4. a) Démontrer que pour tout entier naturel n, $U_{n+1}V_{n+1} = U_nV_n$.
 - b) En déduire la valeur exacte de ℓ .

EXERCICE 2

Une population d'élèves comportant 40% de bacheliers a subi un test de recrutement en première année d'une grande école.

Ce test a donné les résultats suivants :

- 75% des bacheliers sont admis ;
- 52% des non bacheliers sont admis.

Partie A

On choisit au hasard un élève de la population. On note :

B l'événement : «l'élève est bachelier» ;

T l'événement : «l'élève est admis au test» ;

A l'événement : «l'élève est bachelier et est admis au test».

- 1. Préciser chacune des probabilités suivantes :
 - a) la probabilité P(B) de l'événement B ;
 - b) la probabilité P_B (T) de T sachant que B est réalisé ;
 - c) la probabilité de P (T) sachant que B n'est pas réalisé.
- 2. Démontrer que la probabilité de l'événement A est égale à 0,3.
- 3. Calculer la probabilité de l'événement T.
- 4. Déduire des questions précédentes que les événements B et T ne sont pas indépendants.
- 5. Démontrer que la probabilité pour qu'un élève admis au test soit bachelier est égal à $\frac{25}{51}$.

Partie B

On choisit au hasard 5 élèves de la population étudiée.

On note X la variable aléatoire égale au nombre d'étudiants bacheliers et admis au test parmi les 5 choisis.

- 1. Démontrer que la probabilité pour que 3 seulement des 5 élèves choisis soient bacheliers et admis au test est égale à 0,1323.
- 2. Calculer l'espérance mathématique de X.

PROBLEME

L'objet de ce problème est l'étude de chacune des fonctions f, q et h définies ci-dessous.

• f est la fonction dérivable et définie sur $\mathbb{R} - \{-1\}$ par :

$$f(x) = \frac{x-3}{x+1}$$

- g est la fonction définie sur l'ensemble $D_g = \left[0, \frac{1}{e}\right] \cup \left[\frac{1}{e}, +\infty\right]$, par : $g(x) = f(\ln x)$ et g(0) = 1.
- h est la fonction dérivable sur \(\mathbb{R} \) et définie par h(x) = f(e x).

<u>Partie A</u>

1. Démontrer que :

a)
$$\forall x \in D_g \text{ et } x \neq 0, g(x) = 1 - \frac{4}{\ln x + 1}$$
;

b)
$$\forall x \in \mathbb{R}, h(x) = 1 - \frac{4}{e^x + 1}$$
.

2. a) Déterminer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.

b) Déterminer
$$\lim_{\substack{x \to -1 \\ <}} f(x)$$
 et $\lim_{\substack{x \to -1 \\ >}} f(x)$

3. Etudier les variations de f puis dresser son tableau de variation.

Partie B

On note (C_g) la représentation graphique de g dans le plan muni du repère orthogonal \mathcal{R}_1 = (O, I, J). L'unité sur (OI) est 1 cm et sur (OJ) est 2 cm.

- 1. a) Démontrer que g est continue en 0.
 - b) Démontrer que (C_q) admet une demi tangente verticale au point d'abscisse 0.
- 2. a) Déterminer $\lim_{x \to +\infty} g(x)$ puis donner une interprétation graphique du résultat.
 - b) Déterminer $\lim_{x \to \frac{1}{e}} g(x)$ et $\lim_{x \to \frac{1}{e}} g(x)$ puis donner une interprétation graphique du résultat.
- 3. Démontrer que g est strictement croissante puis dresser son tableau de variation.
- 4. Tracer (C_g) et ses asymptotes dans le repère \mathcal{R}_1 .

Partie C

On note (C_h) la représentation graphique de h dans le plan muni du repère orthonormé \mathcal{R}_2 = (O, I, J). L'unité graphique est 1 cm.

- 1. Déterminer $\lim_{x \to -\infty} h(x)$ et $\lim_{x \to +\infty} h(x)$, puis interpréter graphiquement les résultats.
- 2. Démontrer que, pour tout nombre réel x, h'(x) = $\frac{4e^x}{(1+e^x)^2}$.
- 3. En déduire les variations de h puis dresser son tableau de variation.
- 4. On note A et B les points d'intersection respectifs de (Ch) avec les droites (OI) et (OJ).
 - a) Déterminer les coordonnées de chacun des points À et B.
 - b) Démontrer qu'une équation de la tangente (T) à (C_h) en B est y = x 1.
 - c) Démontrer que B est un centre de symétrie de (Ch).
- 5. a) Démontrer que h réalise une bijection de IR sur un l'intervalle que l'on précisera.
 - b) Déterminer l'expression explicite de la bijection réciproque h-1 de h.
- 6. a) Tracer (T), (C_h) et ses asymptotes dans le repère \mathcal{R}_2 .
 - b) En déduire la représentation graphique (Γ) de la fonction réciproque h⁻¹ dans le repère \mathcal{R}_2 .