MINISTÈRE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE COTE D'IVOIRE

MON ECOLE A LA MAISON

SECONDAIRE 2 A MATHEMATIQUES

CÔTE D'IVOIRE – ÉCOLE NUMÉRIQUE

Durée : 12 heures Code :

COMPETENCE 1 Traiter une situation relative aux calculs algébriques et aux fonctions

THEME 2 Calculs algébriques

Leçon Calculs numériques

A-SITUATION D'APPRENTISSAGE

Dans une classe de seconde A2, il y a 60 élèves. 30% de ces élèves sont des garçons et 60% de ces garçons ont moins de 18 ans.

Une fille de la classe affirme que 40% de ces garçons ont plus de 18 ans.

Curieux, les élèves de cette classe cherchent à calculer le pourcentage de garçons de plus de 18 ans afin de se prononcer sur l'affirmation de la fille.

I- OPERATIONS AVEC LES QUOTIENTS

1-Addition de quotients

Propriétés

Soit a, b, c et d des nombres réels tels que b et d soient différents de zéro.

On a:

$$\bullet \quad \frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

$$\bullet \qquad \frac{a}{b} - \frac{c}{b} = \frac{a - c}{b}$$

$$\bullet \quad \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\bullet \quad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

Exercice de fixation

Effectue les calculs suivants :

1)
$$\frac{3}{5} - \frac{7}{5}$$

2)
$$\frac{3}{7} + \frac{5}{2}$$

3)
$$\frac{4}{3} - \frac{5}{4}$$

2

Solution

1)
$$\frac{3}{5} - \frac{7}{5} = \frac{3-7}{5} = -\frac{4}{5}$$

2)
$$\frac{3}{7} + \frac{5}{2} = \frac{3 \times 2 + 5 \times 7}{7 \times 2} = \frac{6 + 35}{14} = \frac{41}{14}$$

3)
$$\frac{4}{3} - \frac{5}{4} = \frac{4 \times 4 - 3 \times 5}{3 \times 4} = \frac{16 - 15}{12} = \frac{1}{12}$$

2-Produit de quotients

Propriétés

Soit a, b, c et d des nombres réels tels que b et d soient différents de zéro.

On a:

$$\bullet \quad a \times \frac{1}{b} = \frac{a}{b}$$

$$\bullet \quad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

Exercice de fixation

Effectue les calculs suivants :

1)
$$3 \times \frac{1}{8}$$

2)
$$\frac{4}{3} \times \frac{5}{4}$$

Solution

1)
$$3 \times \frac{1}{8} = \frac{3 \times 1}{8} = \frac{3}{8}$$

2)
$$\frac{4}{3} \times \frac{5}{4} = \frac{4 \times 5}{3 \times 4} = \frac{5}{3}$$

3- Division de quotients

Propriétés

Soit a, b, c et d des nombres réels tels que b, c et d soient différents de zéro.

•
$$\frac{a}{\frac{c}{d}} = a \times \frac{d}{c} = \frac{ad}{c}$$

$$\bullet \quad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$

Exercice de fixation

Effectue les calculs suivants :

1)
$$\frac{5}{\frac{8}{3}}$$

2)
$$\frac{\frac{4}{3}}{\frac{5}{4}}$$

Solution

1)
$$\frac{5}{\frac{8}{3}} = 5 \times \frac{3}{8} = \frac{5 \times 3}{8} = \frac{15}{8}$$

2)
$$\frac{\frac{4}{3}}{\frac{5}{4}} = \frac{4}{3} \times \frac{4}{5} = \frac{4 \times 4}{3 \times 5} = \frac{16}{15}$$

4-Puissances

Définition

a étant un nombre réel et n un entier naturel non nul,

• On appelle puissance de a d'exposant n le nombre réel noté a^n , tel que :

$$a^{n} = \underbrace{a \times a \times a \times ... \times a}_{n \text{ facteurs \'egaux \`a}}$$

Pour $a \neq 0$

Par convention, $a^0 = 1$

Par ailleurs
$$a^{-n} = \frac{1}{a^n}$$
.

Exemple

$$\bullet$$
 $4^3 = 4 \times 4 \times 4$

•
$$2021^0 = 1$$

•
$$5^{-2} = \frac{1}{5^2}$$

Propriétés

Pour tous nombres réels non nuls a et b et pour tous nombres entiers relatifs n et p, on a :

3

$$\bullet \quad a^n \times a^p = a^{n+p}$$

$$\bullet \quad \frac{a^n}{a^p} = a^{n-p}$$

•
$$\frac{a^n}{a^p} = a^{n-p}$$
•
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

•
$$a^n \times b^n = (ab)^n$$

• $(a^n)^p = a^{np}$

•
$$(a^n)^p = a^{np}$$

Exercice de fixation

Ecris sous la forme a^n où a est un nombre réel non nul et n un entier relatif :

1)
$$5^6 \times 5^{-8}$$

2)
$$\frac{7^{13}}{7^{13}}$$

1)
$$3 \times 3$$

2) $\frac{7^{15}}{7^{13}}$
3) $10^7 \times 3^7$
4) $\frac{3^2}{4^2}$
5) $(5^2)^3$

4)
$$\frac{3^2}{4^2}$$

5)
$$(5^2)^3$$

Solution

1)
$$5^6 \times 5^{-8} = 5^{6-8} = 5^{-2}$$

2)
$$\frac{7^{15}}{7^{13}} = 7^{15-13} = 7^2$$

2)
$$\frac{7^{15}}{7^{13}} = 7^{15-13} = 7^2$$

3) $10^7 \times 3^7 = (10 \times 3)^7 = 30^7$
4) $\frac{3^2}{4^2} = \left(\frac{3}{4}\right)^2$
5) $(5^2)^3 = 5^{2 \times 3} = 5^6$

4)
$$\frac{3^2}{4^2} = \left(\frac{3}{4}\right)^2$$

5)
$$(5^2)^3 = 5^{2 \times 3} = 5^6$$

5 - Calculs avec les radicaux

Propriétés

Pour tous nombres réels positifs a et b et pour tout nombre entier naturel n, on a :

$$\bullet \quad \sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$
 • Pour $b \neq 0$, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

$$\bullet \quad \sqrt{a^n} = (\sqrt{a})^n$$

Exercice de fixation

Calcule:

1)
$$\sqrt{36 \times 81}$$

2)
$$\sqrt{\frac{16}{49}}$$

3)
$$\sqrt{2^3}$$

Solution

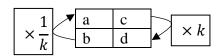
1)
$$\sqrt{36 \times 81} = \sqrt{36} \times \sqrt{81} = 6 \times 9 = 54$$

$$2) \quad \sqrt{\frac{16}{49}} = \frac{\sqrt{16}}{\sqrt{49}} = \frac{4}{7}$$

3)
$$\sqrt{2^3} = (\sqrt{2})^3 = \sqrt{2} \times \sqrt{2} \times \sqrt{2} = 2\sqrt{2}$$

II-PROPORTIONNALITÉ

1- Définition


Deux grandeurs x et y sont proportionnelles si l'une est le produit de l'autre par un nombre non nul k donné ; par exemple: y = kx.

Le nombre *k* s'appelle coefficient de proportionnalité.

Exemple : L'argent payé à la caisse d'une boulangerie est proportionnel au nombre de pains demandés par un client.

2- Tableau de proportionnalité

Exemple

Ce tableau est un tableau de proportionnalité

3- Pourcentage

a- Pourcentage d'une quantité

k% d'une quantité a est égale à : $a \times \frac{k}{100}$

Exemple

 $\overline{20\% \text{ de } 40\text{kg est}} : 40 \times \frac{20}{100} = 8 \text{ kg.}$

Exercice de fixation

Détermine 2% de 300g.

Solution

2% de 300g sont 300 $\times \frac{2}{100} = 6$; soit 6g.

b- Augmentation et réduction de k%

- Augmenter une quantité a de k% c'est multiplier a par $\left(1 + \frac{k}{100}\right)$
- Réduire une quantité a de k% c'est multiplier a par $\left(1 \frac{k}{100}\right)$

Exercice de fixation

- 1) Calcule le prix d'un objet coutant initialement 2000F, après une réduction de 30%.
- 2) Calcule le prix d'un objet coutant initialement 2000F, après une augmentation de 30%.

Solution

1) Un objet d'un coût initial de 2000F, après une réduction de 30% coûtera :

$$2000 \times \left(1 - \frac{30}{100}\right) = 2000 \times \frac{70}{100} = 1400$$
F.

2) Un objet d'un coût initial de 2000F, après une augmentation de 30% coûtera :

$$2000 \times \left(1 + \frac{30}{100}\right) = 2000 \times \frac{130}{100} = 2600$$
F.

c- Produit de pourcentages

Pour déterminer a% de b% d'une quantité, revient à multiplier cette quantité par le produit $a\% \times b\%$ c'est-à-dire par $\frac{a\times b}{10000}$.

Exercice de fixation

Calcule 5% de 2% de 300g.

Solution

5% de 2% de 300g sont :
$$\left(300 \times \frac{2 \times 5}{10000}\right) = 3 \times \frac{1}{10} = 0.3$$
 g.

III- APPROXIMATION DÉCIMALE

1- Approximation décimale d'ordre n par défaut ou par excès d'un nombre réel

Exemple

On donne $\sqrt{2} \approx 1,414213562$.

L'encadrement de $\sqrt{2}$ par deux décimaux consécutifs d'ordre 3 est : 1,414 < $\sqrt{2}$ < 1,415

L'approximation décimale d'ordre 3 par défaut de $\sqrt{2}$ est : 1,414.

L'approximation décimale d'ordre 3 par excès de $\sqrt{2}$ est : 1,415.

Exercice de fixation

On donne $\sqrt{15} \approx 3.87298334621$.

- 1) Trouve l'approximation décimale d'ordre 4 par défaut de $\sqrt{15}$.
- 2) Trouve l'approximation décimale d'ordre 4 par excès de $\sqrt{15}$.

Solution

L'encadrement de $\sqrt{15}$ par deux décimaux consécutifs d'ordre 4 est :3,8729 < $\sqrt{15}$ < 3,8730.

- 1) 3,8729 est l'approximation décimale d'ordre 4 par défaut de $\sqrt{15}$.
- 2) 3,8730 est l'approximation décimale d'ordre 4 par excès de $\sqrt{15}$.

2-Arrondi d'ordre n d'un nombre réel

Exemple

On donne $\sqrt{2} \approx 1,414213562$.

L'arrondi à l'ordre 3 de $\sqrt{2}$ est 1,414 car le quatrième chiffre après la virgule est plus petit que 5. L'arrondi à l'ordre 7 de $\sqrt{2}$ est 1,4142135 car le huitième chiffre après la virgule est plus grand ou égal à 5.

Exercice de fixation

On donne $\sqrt{15} \approx 3,87298334621$.

- 1) Trouve l'arrondi d'ordre 3 de $\sqrt{15}$.
- 2) Trouve l'arrondi d'ordre 5 de $\sqrt{15}$.

Solution

- L'arrondi d'ordre 3 de $\sqrt{15}$ est 3,873.
- L'arrondi d'ordre 5 de $\sqrt{15}$ est 3,87298.

C-SITUATION COMPLEXE

Dans la classe seconde A_2 de ton lycée, il y a 60 élèves. 40% de ces élèves sont des garçons et 25% de ces garçons ont moins de 18 ans.

Une fille de ta classe seconde A_1 affirme que 65% des garçons de la seconde A_2 ont plus de 18 ans. Des élèves ne sont pas de cet avis. A l'aide d'une argumentation basée sur les connaissances mathématiques du niveau, dis si l'affirmation de la fille de ta classe est juste.

Réponse

Pour résoudre cet exercice, nous allons utiliser les propriétés de calculs numériques.

Nous allons appliquer des pourcentages à aux effectifs.

1) Déterminons le nombre de garçons de la classe de seconde A₂.

$$60 \times \frac{40}{100} = 24$$
 garçons.

60 × $\frac{40}{100}$ = 24 garçons. 2) Déterminons le nombre de garçons qui ont moins de 18 ans.

$$24 \times \frac{25}{100} = 6$$
 garçons.

3) Déterminons le pourcentage des garçons qui ont plus de 18 ans
$$24-6=18$$
 et $18 \times \frac{100}{24} = 0.75$ soit 75% des garçons ont plus de 18 ans.

75% des garçons ont plus de 18 ans donc l'affirmation de la fille de la seconde A1 n'est pas juste.

D-EXERCICES

1- Exercices d'application

Exercice 1

Pour chaque affirmation une seule réponse est juste. Écris le numéro de l'affirmation de la ligne et la lettre de la colonne qui correspond à la réponse juste

N°	AFFIRMATIONS	Réponses			
	AFFIRMATIONS	a.	b.	c.	
1.	$\left \frac{7}{3} + \frac{5}{3}\right $ est égale à	3	4	2	
2.	$4 - \frac{35}{11}$ est égale à	$\frac{-31}{11}$	$\frac{9}{11}$	$\frac{6}{11}$	
3.	$\frac{2}{7} \times \frac{3}{2}$ est égale à	$\frac{25}{14}$	<u>5</u> 9	$\frac{3}{7}$	
4.	$\left(\frac{2}{3}\right)^3$ est égale à	8 27	6 9	<u>5</u> 6	
5.	$\sqrt{20} \times \sqrt{4}$ est égale à	$8\sqrt{10}$	$10\sqrt{8}$	4√5	

Solution

1.
$$-b$$
.

- 2. -b.
- 3. -c.
- 4. -a.
- 5. -c.

Exercice 2

On donne le tableau de proportionnalité ci-dessous.

- 1) Détermine le coefficient de proportionnalité k.
- 2) Complète le tableau.

				_
3	2		10	
9		27		$\bigwedge^{\times K}$

Solution

1)
$$k = \frac{9}{3} = 3$$

2)

<i>4)</i>					
	3	2	9	10	
	9	6	27	30	\checkmark (x3)

2- Exercices de renforcement

Exercice 3

Calcule et donne le résultat sous la forme de fraction irréductible :

a)
$$\frac{\frac{200}{35}}{\frac{25}{7}}$$
; b) $\frac{13}{\frac{39}{46}}$; c) $\frac{12}{2^3}$

Solution

a)
$$\frac{\frac{200}{35}}{\frac{25}{7}} = \frac{200}{35} \times \frac{7}{25} = \frac{200 \times 7}{35 \times 25} = \frac{1400:175}{875:175} = \frac{8}{5}$$

b)
$$\frac{\frac{7}{39}}{\frac{39}{46}} = 13 \times \frac{46}{39} = \frac{13 \times 46}{39} = \frac{598:13}{39:13} = \frac{46}{3}$$

c)
$$\frac{12}{2^3} = \frac{12:4}{8:4} = \frac{3}{2}$$

Exercice 4

Sur un sachet de 275 grammes de café coûte 1500F. On peut lire sur ce sachet: 30% arabica et 70% robusta.

- 1) Calcule la masse de chacune des deux variétés.
- 2) A l'occasion d'une promotion, il est mentionné dans le rayon d'exposition du sachet de café 15% de réduction. Calcule le nouveau prix de ce sachet de café.

8

Solution

1) * Calculons la masse d'arabica.

$$275 \times \frac{30}{100} = 82,5$$
 grammes

* Calculons la masse de robusta

$$275 \times \frac{70}{100} = 192,5$$
 grammes

2) Calculons le nouveau prix du sachet de café.

$$1500 \left(1 - \frac{15}{100}\right) = 1500 \times \frac{85}{100} = 1275 \text{ F}.$$

3- Exercices d'approfondissement

Exercice 5

Une entreprise de 80 employés comporte 15% d'agents de maîtrise et le reste d'ouvriers. 35 employés sont des femmes dont 7 agents de maîtrise.

- 1) Calcule l'effectif des agents de maîtrise.
- 2) Calcule le pourcentage de femmes dans cette entreprise.
- 3) Calcule le pourcentage d'agents de maîtrise parmi les femmes.

Solution

1) Calculons l'effectif des agents de maîtrise.

$$80 \times \frac{15}{100} = 12$$
. Il y a donc 12 agents de maîtrise.

2) Calculons le pourcentage de femme dans cette entreprise.

$$35 \times \frac{100}{80} = 43,75$$
. Il y a donc 43,75% de femmes dans cette entreprise.

3) Calculons le pourcentage d'agents de maîtrise parmi les femmes

$$7 \times \frac{100}{35} = 20$$
. Il y a donc 20% d'agents de maîtrise parmi les femmes.

V. DOCUMENTS

- 1- 2^e Littéraire, CIAM
- 2- Les Cahiers de la réussite Mathématiques 2^{nde} A, Vallesse Editions
- 3- Maths Nouveaux programmes APC 2^{de A}, Collection "Le Repère"