SECONDAIRE TIE D MATHEMATIQUES

CÔTE D'IVOIRE - ÉCOLE NUMÉRIQUE

THEME: FONCTIONS NUMERIQUES

Durée: 14 heures Code:

Leçon 3: DÉRIVABILITÉ ET ÉTUDE DE FONCTIONS

A. SITUATION D'APPRENTISSAGE

En visite dans une usine de fabrication et de commercialisation de sachets de poudre de cacao des élèves d'une classe de Terminale D reçoivent les informations suivantes :

« La capacité journalière de production de l'usine est comprise entre 1 000 et 5 000 sachets. Toute la production journalière est commercialisée. Une étude a révélé que le bénéfice journalier, exprimé en millions de francs CFA, réalisé pour la production et la vente de x milliers de sachets est modélisé sur l'intervalle [1; 5] par la fonction B définie par : $B(x) = -\frac{1}{3}x^3 + 9x + 2$ ».

Le Directeur de l'usine veut accroître le bénéfice de l'entreprise. N'ayant pas de personnel qualifié, il demande aux élèves le nombre de sachets à produire en un jour, à l'unité près, pour que l'entreprise réalise un bénéfice maximal. Dès leur retour en classe, les élèves s'organisent pour répondre à la préoccupation du Directeur.

B. CONTENU DE LA LEÇON

I – DERIVABILITE

1 Dérivabilité à gauche-dérivabilité à droite d'une fonction en un point

a) Propriété et définition

• Une fonction numérique f définie sur un intervalle ouvert K est dérivable à gauche en un nombre réel x_0 de K si et seulement si $\lim_{\substack{x \to x_0 \\ <}} \frac{f(x) - f(x_0)}{x - x_0}$ existe et estfinie.

Dans ce cas, cette limite est appelée nombre dérivé de f à gauche en x_0 et se note $f_g'(x_0)$.

La demi-droite passant par le point $M(x_0, f(x_0))$ et de coefficient directeur $f_g'(x_0)$ est appelée **demi-tangente à gauche** au point $M(x_0, f(x_0))$.

• Une fonction numérique f définie sur un intervalle ouvert K est dérivable à droite en un nombre réel x_0 de K si et seulement si $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} existe$ et est f inie

Dans ce cas, cette limite est appelée nombre dérivé de f à droite en x_0 et se note $f_d'(x_0)$. La demi-droite passant par le point $M(x_0, f(x_0))$ et de coefficient directeur $f'_d(x_0)$ est appelée **demi-tangente** à **droite** au point $M(x_0, f(x_0))$.

Exercice de fixation

Soit la fonction f définie sur $\mathbb{R}\setminus\{0;2\}$

par :
$$\begin{cases} \forall x \in]-\infty; 0[\cup]0; 1], f(x) = \frac{1}{x-2} \\ \forall x \in [1; 2[\cup]2; +\infty[, f(x) = \frac{-1}{x}] \end{cases}$$

et (C) sa courbe représentative donnée ci- contre dans le plan muni d'un repère orthonormé (O, I, J).

1. Etudie la dérivabilité de *f* à gauche et à droite

en 1

2. interprète graphiquement les résultats.

3. Trace les demi-tangentes à (C) au point d'abscisse 1.

Solution

1. On a :
$$f(1) = -1$$
.

$$\lim_{\substack{x \to 1 \\ <}} \frac{f(x) - f(1)}{x - 1} = \lim_{\substack{x \to 1 \\ <}} \frac{\frac{1}{x - 2} + 1}{x - 1} = \lim_{\substack{x \to 1 \\ <}} \frac{1}{x - 2} = -1;$$

f est donc dérivable à gauche en 1 car $\lim_{\substack{x \to 1 \\ <}} \frac{f(x) - f(1)}{x - 1}$ est finie et $f'_g(1) = -1$.

$$\lim_{\substack{x \to 1 \\ >}} \frac{f(x) - f(1)}{x - 1} = \lim_{\substack{x \to 1 \\ >}} \frac{\frac{-1}{x} + 1}{x - 1} = \lim_{\substack{x \to 1 \\ <}} \frac{1}{x} = 1$$

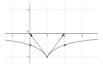
f est donc dérivable à droite en 1 car $\lim_{\substack{x \to 1 \\ >}} \frac{f(x) - f(1)}{x - 1}$ est finie et $f_d'(1) = 1$.

Interprétation graphique :

(C) admet au point d'abscisse 1 une demi-tangente à gauche de coefficient directeur -1 et une demi-tangente à droite de coefficient directeur 1.

Rappel: Connaissant $f'_g(x_0)$, un vecteur directeur de la demi-tangente à gauche au point d'abscisse l est \overrightarrow{u} (-1;- $f'_g(x_0)$).

Un vecteur directeur de la demi-tangente à gauche en 1 est \vec{u} (-1; 1) et un vecteur directeur de la demi-tangente à droite en 1 est \vec{v} (1; 1). On trace alors ces deux demi-tangentes. Voir figure ci-contre.



b) Propriété

Soit f une fonction définie sur un intervalle ouvert K et x_0 un nombre réel de K. f est dérivable en x_0 si et seulement si f est dériable à gauche et à droite en x_0 et $f'_d(x_0) = f'_g(x_0)$.

Exercice de fixation

Soit la fonction f définie sur \mathbb{R} par : $\begin{cases} \forall x \in]-\infty; 0[, f(x) = x^2 \\ \forall x \in [0; +\infty[, f(x) = x^3] \end{cases}$

Justifie que f est dérivable en 0.

Solution

On a :
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$$
;

f est donc dérivable à gauche en 0 et $f'_g(0) = 0$.

On a:
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^3}{x} = \lim_{x \to 0} x^2 = 0$$
;

f est donc dérivable à droite en 0 et $f'_d(0) = 0$.

Comme $f'_g(0) = f'_d(0)$, donc f est dérivable en 0 et f'(0) = 0.

c) Demi - tangente verticale

Si $x \mapsto \frac{f(x)-f(x_0)}{x-x_0}$ admet une limite infinie à gauche ou à droite en x_0 , alors la courbe représentative de f dans le plan rapporté à un repère orthogonal admet une **demi-tangente** verticale au point de coordonnées $(x_0; f(x_0))$.

Exercice de fixation

Soit la fonction f définie sur \mathbb{R}^+ par : $f(x) = \sqrt{x} - x$.

On note (C) la représentation graphique de f dans le plan muni d'un repère orthonormé (O, I, J). Etudie la dérivabilité de f en 0 puis interprète graphiquement le résultat obtenu.

Solution

On a:
$$\lim_{\substack{x \to 0 \\ >}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ >}} \frac{\sqrt{x} - x}{x}$$

$$\lim_{\substack{x \to 0 \\ >}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ >}} \frac{\sqrt{x}}{x} - 1 = \lim_{\substack{x \to 0 \\ >}} \frac{1}{\sqrt{x}} - 1 = +\infty$$

Donc f n'est pas dérivable à droite en 0 car $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ est infinie.

Interprétation graphique :(C) admet en son point d'abscisse 0 une demi-tangente verticale.

2- Dérivabilité sur un intervalle a)Définition

- Une fonction numérique f est dérivable sur un intervalle ouvert K si f est dérivable en tout nombre réel de K.
- Une fonction numérique f est dérivable sur un intervalle fermé [a;b] si f est dérivable sur l'intervalle ouvert a; b, dérivable à droite en a et dérivable à gauche en b.

b) Exemples

- ✓ La fonction $x \mapsto \sqrt{x}$ est dérivable sur]0; $+\infty[$.
- \checkmark Toute fonction polynôme est dérivable sur \mathbb{R} .

3 – Dérivabilité d'une fonction composée

a) Propriété

Soit K un intervalle ouvert ; f et g deux fonctions numériques telles que $f \circ g$ est définie sur K ; $x_0 \in K$. Si g est dérivable en x_0 et f dérivable en $g(x_0)$ alors la fonction $f \circ g$ est dérivable en x_0 et : $(f \circ g)'(x_0) = g'(x_0) \times (f' \circ g)(x_0) = g'(x_0) \times f'[g(x_0)]$

Exercice de fixation

Soient les fonctions f et g de \mathbb{R} vers \mathbb{R} définies par : $f(x) = \frac{3-x}{x-2}$ et $g(x) = x - \frac{1}{x} + 2$. Démontre que $f \circ g$ est dérivable en 3 et calcule $(f \circ g)'(3)$.

Solution

g est dérivable sur $]-\infty$;0[et sur]0;+ ∞ [, donc g est dérivable en 3.

f est dérivable sur $]-\infty$; 2[et sur]2; $+\infty$ [.

 $g(3) = \frac{14}{3}$, comme $g(3) \neq 2$ donc f est dérivable en g(3).

On conclut que $f \circ g$ est dérivable en 3.

Pour tout $x \neq 0$, $g'(x) = 1 + \frac{1}{x^2}$. Donc $g'(3) = \frac{10}{9}$. Pour tout $x \neq 2$, $f'(x) = \frac{-1}{(x-2)^2}$. Donc $f'(\frac{14}{3}) = -\frac{9}{64}$.

On conclut que : $(f \circ g)'(3) = \frac{10}{9} \times (-\frac{9}{64}) = -\frac{5}{32}$.

b) Conséquences

u est une fonction dérivable sur un intervalle K.

Fonctions	Dérivées	
$u^n (n \in \mathbb{Q}^*)$	$nu'u^{n-1}$	
\sqrt{u} avec $u > 0$ sur K	$\frac{u'}{2\sqrt{u}}$	
cos (u)	$-u'\sin(u)$	
sin (u)	$u'\cos(u)$	
$tan(u)$ avec $cos(u) \neq 0$ Sur K	$u' \times [1 + tan^2(u)]$ ou $\frac{u'}{cos^2(u)}$	

Exercices de fixation

Exercice 1

Dans chacun des cas suivants, f est une fonction dérivable sur \mathbb{R} .

Calcule sa dérivée.

a)
$$f(x)=(x^2-3x+1)^5$$
; b) $f(x)=\sqrt{x^2+3x+5}$; c) $f(x)=\cos(x^2)$
d) $f(x)=\sin(\sin x)$; e) $f(x)=\frac{x}{\sqrt{x^2+1}}$.

Solution

a)
$$\forall x \in \mathbb{R}, f'(x) = 5(2x - 3)(x^2 - 3x + 1)^4$$
.

b)
$$\forall x \in \mathbb{R}, f'(x) = \frac{2x+3}{2\sqrt{x^2+3x+5}}.$$

$$c) \ \forall \ x \in \mathbb{R}, \quad f'(x) = -2x\sin(x^{2}).$$

$$d) \ \forall \ x \in \mathbb{R}, f'(x) = \cos x \times \cos(\sin x).$$

$$e) \ \forall x \in \mathbb{R}, f'(x) = \frac{\sqrt{x^{2}+1}-x \times \frac{2x}{2\sqrt{x^{2}+1}}}{x^{2}+1} = \frac{1}{(x^{2}+1)\sqrt{x^{2}+1}}.$$

Exercice 2

Soit la fonction f définie sur $\left[\frac{1}{4}; +\infty\right[par : f(x) = (4x-1)\sqrt{4x-1} \right]$.

- 1. Etudie la dérivabilité de f en $\frac{1}{4}$.
- 2. On admet que f est dérivable sur $\left[\frac{1}{4}; +\infty\right[$. Calcule f'(x) pour tout x de $\left[\frac{1}{4}; +\infty\right[$

5

Solution

$$1. \lim_{x \to \frac{1}{4}} \frac{f(x) - f(\frac{1}{4})}{x - \frac{1}{4}} = \lim_{x \to \frac{1}{4}} \frac{(4x - 1)\sqrt{4x - 1}}{x - \frac{1}{4}} = \lim_{x \to \frac{1}{4}} (4\sqrt{4x - 1}) = 0$$

donc
$$f$$
 est dérivable en $\frac{1}{4} \operatorname{car} \lim_{x \to \frac{1}{4}} \frac{f(x) - f(\frac{1}{4})}{x - \frac{1}{4}}$ est finie; $f'(\frac{1}{4}) = 0$.

2.f est dérivable sur $\left[\frac{1}{4}; +\infty\right[$ et $\forall x \in \left[\frac{1}{4}; +\infty\right[, f'(x) = 6\sqrt{4x-1}.$

4 – Dérivabilité d'une bijection réciproque

a) Propriété

Soit K un intervalle, f une fonction numérique dérivable et strictement monotone sur K , $x_0 \in K$ et $y_0 = f(x_0)$.

Si $f'(x_0) \neq 0$ alors la bijection réciproque f^{-1} de f est dérivable en y_0 et $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$.

Point méthode

Pour calculer le nombre dérivé de f^{-1} en y_0 , on peut procéder comme suit :

- On détermine $x_0 \in K$, tel que $f(x_0) = y_0$;
- On calcule $f'(x_0)$ et on vérifie que $f'(x_0) \neq 0$;
- On conclut alors que f^{-1} est dérivable en y_0 ;
- On calcule enfin $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

Exercice de fixation

Soit la fonction f définie sur \mathbb{R} par: $f(x) = x^2 - x$.

- 1. Démontre que f réalise une bijection de $]-\infty;\frac{1}{2}]$ sur $\left[-\frac{1}{4};+\infty\right[$.
- 2. Soit g la restriction de fà $\left]-\infty; \frac{1}{2}\right]$.

Démontre que g^{-1} est dérivable en 2 et calcule $(g^{-1})'(2)$.

Solution

1. f est dérivable sur \mathbb{R} , et pour tout x élément de \mathbb{R} , f'(x) = 2x - 1.

$$f'(x) = 0 \iff x = \frac{1}{2} \text{ et } \forall x \in]-\infty; \frac{1}{2}[, f'(x) < 0.$$

On a:
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^2 - x) = \lim_{x \to -\infty} x^2 = +\infty.$$

Ainsi, f est continue et strictement décroissante $\sup \left] -\infty; \frac{1}{2} \right]$ donc f réalise une bijection de $\left[-\infty; \frac{1}{2} \right]$ sur $f\left(\left[-\infty; \frac{1}{2} \right] \right) = \left[-\frac{1}{4}; +\infty \right[$.

2. La résolution de l'équation $x \in \left] -\infty; \frac{1}{2} \right]$, g(x) = 2 donne : x = -1.

On a: g(-1) = 2; g'(-1) = -3; comme $g'(-1) \neq 0$, donc la bijection réciproque g^{-1} de g est dérivable en 2 et on a: $(g^{-1})'(2) = \frac{1}{g'(-1)} = -\frac{1}{3}$.

5 – Dérivées successives

Définition

Soit *f* une fonction définie sur un intervalle K.

• Si f est dérivable sur K, alors sa fonction dérivée est la dérivée première de f. On la note : f' ou $\frac{df}{dx}$.

- Si f' est dérivable sur K, alors sa fonction dérivée est la dérivée seconde de f.
 - On la note : $f''ou \frac{d^2 f}{dx^2}$ ou $f^{(2)}$.
- De proche en proche, Si $f^{(n-1)}$ est dérivable sur K, alors sa fonction dérivée est la dérivée $n^{ième}$ de f ou la dérivée d'ordre n de f.

On la note :
$$f^{(n)}ou \frac{d^n f}{dx^n}$$
.

EXERCICE DE FIXATION

Détermine les 4 premières dérivées successives de la fonction f définie sur \mathbb{R} par : $f(x) = x^3 - 2x^2 + 3$. SOLUTION

$$\forall x \in \mathbb{R}, f'(x) = 3x^2 - 4x;$$

$$\forall x \in \mathbb{R}, f''(x) = 6x - 4;$$

$$\forall x \in \mathbb{R}, \ f^{(3)}(x) = 6 \ ;$$

$$\forall x \in \mathbb{R}, f^{(4)}(x) = 0.$$

6 - Inégalités des accroissements finis

Propriété 1

Soit a et b deux nombres réels tels que a < b et f une fonction numérique dérivable sur [a;b].

S'il existe deux nombres réels m et M tels que : $\forall x \in [a; b], m \le f'(x) \le M$,

alors:
$$m(b-a) \le f(b) - f(a) \le M(b-a)$$
.

Exercice de fixation

Justifie que :
$$\frac{1}{\sqrt{19}} \le \sqrt{19} - \sqrt{17} \le \frac{1}{\sqrt{17}}$$

Solution

On pose
$$f(x) = \sqrt{x}$$
.

f est dérivable sur
$$[\sqrt{17}; \sqrt{19}]$$
 et $\forall x \in [\sqrt{17}; \sqrt{19}], f'(x) = \frac{1}{2\sqrt{x}}$.

$$\forall x \in \left[\sqrt{17}; \sqrt{19}\right], \ \sqrt{17} \le \sqrt{x} \le \sqrt{19}, \ \text{donc} \ \frac{1}{2\sqrt{19}} \le f'(x) \le \frac{1}{2\sqrt{17}}.$$

D'après l'inégalité des accroissements finis, on a :

$$\frac{1}{2\sqrt{19}}(19-17) \le f(19) - f(17)) \le \frac{1}{2\sqrt{17}}(19-17); \text{ Donc } \frac{1}{\sqrt{19}} \le \sqrt{19} - \sqrt{17} \le \frac{1}{\sqrt{17}}.$$

Propriété 2

Soit f une fonction numérique dérivable sur un intervalle I.

S'il existe un nombre réel M tel que $\forall x \in I$, $|f'(x)| \le M$, alors pour tous nombres réels a et b de I, on a : $|f(b) - f(a)| \le M|b - a|$.

Exercice de fixation

Démontre que, pour tous nombres réels x et y, on a : $|\cos(x) - \cos(y)| \le |x - y|$.

Solution

Soit la fonction f définie sur \mathbb{R} par : $f(t) = \cos(t)$.

f est dérivable sur \mathbb{R} et $\forall t \in \mathbb{R}, f'(t) = -\sin(t)$.

On a : $|f'(t)| \le 1$ pour tout nombre réel t.

Donc d'après l'inégalité des accroissements finis, pour tous nombres réels x et y,

on a :
$$|f(x) - f(y)| \le 1$$
. $|x - y|$.

Comme $f(x) = \cos(x)$ et $f(y) = \cos(y)$, donc pour tous nombres réels x et y,

on a:
$$|\cos(x) - \cos(y)| \le |x - y|$$

II – ETUDE DE FONCTIONS

Exercice 1

Soit la fonction f définie sur \mathbb{R} par : $\begin{cases} f(x) = x^2 + x \text{ si } x < 0 \\ f(x) = \sqrt{x} - x \text{ si } x \ge 0 \end{cases}$

On note (C) la représentation graphique de f dans le plan muni d'un repère orthonormé (O, I, J).

- 1. Etudie la continuité de f en 0.
- 2. Etudie la dérivabilité de f en 0 puis interprète graphiquement les résultats obtenus.
- 3. a) Calcule les limites de f en $-\infty$ et en $+\infty$.
- b) Justifie que la courbe (C) admet en −∞ une branche parabolique dont on précisera la direction.
- 4. On admet que f est dérivable sur $]-\infty$; 0[et sur]0; $+\infty[$. Etudie les variations de f et dresse son tableau de variation.
- 5. Trace (C) et les demi-tangentes obtenues dans la question b).

Solution

1.
$$f(0) = 0$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^2 + x) = 0$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\sqrt{x} - x \right) = 0$$

$$\lim_{\substack{x \to 0 \\ <}} f(x) = \lim_{\substack{x \to 0 \\ <}} f(x) = f(0) \text{ donc } f \text{ est continue en } 0.$$

$$2.\lim_{\substack{x \to 0 \\ <}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \left(\frac{x^2 + x}{x}\right) = \lim_{x \to 0} (x + 1) = 1$$

f est donc dérivable à gauche en 0 car $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ est finie et $f_g'(0)=1$.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \left(\frac{\sqrt{x} - x}{x}\right) = \lim_{x \to 0} \left(\frac{\sqrt{x}}{x} - 1\right) = \lim_{x \to 0} \left(\frac{1}{\sqrt{x}} - 1\right) = +\infty$$

f n'est pas dérivable à droite en 0 car $\lim_{\substack{x\to 0\\ >}} \frac{f(x)-f(0)}{x-0}$ est infinie

Conclusion: f n'est pas dérivable en 0.

Interprétation graphique : (C) admet au point d'abscisse 0 une demi-tangente à gauche de coefficient directeur 1 et à droite une demi-tangente verticale.

3.a) Limites de f en
$$-\infty$$
 et $+\infty$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^2 + x) = \lim_{x \to -\infty} (x^2) = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (\sqrt{x} - x) = \lim_{x \to +\infty} (\sqrt{x} (1 - \sqrt{x})) = -\infty \operatorname{car} \begin{cases} \lim_{x \to +\infty} (\sqrt{x}) = +\infty \\ \lim_{x \to +\infty} (1 - \sqrt{x}) = -\infty \end{cases}$$

b) On a:
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^2 + x}{x} = \lim_{x \to -\infty} (1 + x) = -\infty.$$

Donc (C) admet en $-\infty$ une branche parabolique de direction celle de (OJ).

4. f est dérivable sur $]-\infty$; 0[et sur]0; $+\infty[$

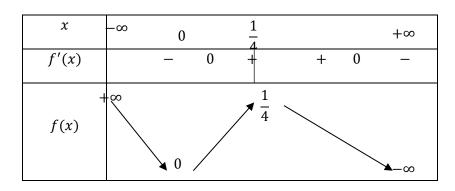
$$\begin{cases} \forall x \in]-\infty; 0[, f'(x) = 2x + 1\\ \forall x \in]0; +\infty[, f'(x) = \frac{1}{2\sqrt{x}} - 1 = \frac{1 - 2\sqrt{x}}{2\sqrt{x}} \end{cases}$$

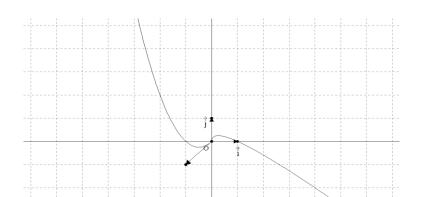
- $x \in]-\infty; 0[, f'(x) = 0 \Leftrightarrow x = -\frac{1}{2}$ $f'(x) > 0 \Leftrightarrow x \in]-\frac{1}{2}; 0[\text{et } f'(x) < 0 \Leftrightarrow x \in]-\infty; -\frac{1}{2}[. \text{Ainsi, } f \text{ est strictement croissante}$ $sur[-\frac{1}{2}; 0] \text{ et } f \text{ est strictement décroissante sur}]-\infty; -\frac{1}{2}[.$
- Pour tout $x \in]0$; $+\infty[, 2\sqrt{x} > 0 \text{ donc } f'(x) \text{ a le signe de } 1 2\sqrt{x}.$

$$f'(x) = 0 \Leftrightarrow 1 - 2\sqrt{x} = 0 \Leftrightarrow x = \frac{1}{4}$$

 $f'(x) > 0 \iff 1 - 2\sqrt{x} > 0 \iff 0 < x < \frac{1}{4}.$

Ainsi, f est strictement croissante $sur[0; \frac{1}{4}]$ et f est strictement décroissante $sur[\frac{1}{4}; +\infty[$.





Le plan est rapporté à un repère orthonormé (O, I, J) (l'unité graphique est 2 cm).

Soit h la fonction définie sur \mathbb{R} par : $h(x) = x + \sqrt{|x^2 - 1|}$.

On note (C) la courbe représentative deh.

1. Justifie que :
$$\begin{cases} \forall \ x \in]-\infty; -1] \cup [1; +\infty[\ , h(x) = x + \sqrt{x^2 - 1} \\ \forall \ x \in [-1; 1] \ , h(x) = x + \sqrt{1 - x^2} \end{cases}$$
 2Démontre que (C) admet aux points d'abscisses – 1 et 1 des demi-tangentes verticales.

- 3. Démontre que la droite (OI) est une asymptote à (C) en $-\infty$.
- 4.a) Calcule la limite de h en $+\infty$.
- b) Démontre que la droite (D) d'équation y = 2x est asymptote à (C) en $+\infty$.
- c) Justifie que (C) est au-dessous de (D)sur $\left| \frac{\sqrt{2}}{2}; +\infty \right|$.
- 5.a) On admet que hest dérivable sur les intervalles $]-\infty; -1[et]1; +\infty[$; et pour |x| > 1, $|x| > \sqrt{x^2 - 1}$.

Etudie les variations de hsur les intervalles $]-\infty; -1[et]1; +\infty[$.

b) On admet que h est dérivable sur l'intervalle]-1; 1[.

Justifie que h est croissante sur l'intervalle $\left[-1; \frac{\sqrt{2}}{2}\right]$ et décroissante sur l'intervalle $\left[\frac{\sqrt{2}}{2}; 1\right]$.

- c) Dresse le tableau de variation de la fonction h sur \mathbb{R}
- 6. Trace(D) et (C).
- 7. Soit *k*la restriction de *h* à] $-\infty$; -1].
- a) Justifie que k réalise une bijection de $]-\infty$; -1] sur [-1;0[.
- b) Calcule $k(-\sqrt{2})$.
- c) Soit k^{-1} la bijection réciproque de k.

Démontre que k^{-1} est dérivable en $1 - \sqrt{2}$ et calcule $(k^{-1})'(1 - \sqrt{2})$.

Solution

1.

x	-∞ -1	1	+∞
$x^2 - 1$	+ ()- (+
$ x^2 - 1 $	$x^2 - 1$	$1 - x^2$	$x^2 - 1$
h(x)	$x + \sqrt{x^2 - 1}$	$x + \sqrt{1 - x^2}$	$x + \sqrt{x^2 - 1}$

Donc:
$$\begin{cases} \forall \ x \in]-\infty; -1] \cup [1; +\infty[, h(x) = x + \sqrt{x^2 - 1} \\ \forall \ x \in [-1; 1] , h(x) = x + \sqrt{1 - x^2} \end{cases}$$

2.Dérivabilité de h à gauche en - 1 :

$$\lim_{\substack{x \to -1 \\ <}} \frac{h(x) - h(-1)}{x + 1} = \lim_{\substack{x \to -1 \\ <}} \frac{x + \sqrt{x^2 - 1} + 1}{x + 1} = \lim_{\substack{x \to -1 \\ <}} \left(1 + \frac{\sqrt{x^2 - 1}}{x + 1}\right)$$

On
$$a: \lim_{\substack{x \to -1 \\ <}} (x-1) = -2$$
 et $\lim_{\substack{x \to -1 \\ <}} \frac{1}{\sqrt{x^2-1}} = +\infty, donc \lim_{\substack{x \to -1 \\ <}} 1 + \frac{x-1}{\sqrt{x^2-1}} = -\infty.$

$$D'où: \lim_{\substack{x\to -1\\ <}} \frac{h(x)-h(-1)}{x+1} = -\infty \ donc \ hn'est \ pas \ d\'erivable \ \grave{a} \ gauche \ en-1 \ .$$

Par conséquent, (C) admet une demi-tangente verticale au point d'abscisse -1.

Dérivabilité de h à droite en 1

$$\lim_{\substack{x \to 1 \\ >}} \frac{h(x) - h(1)}{x - 1} = \lim_{\substack{x \to 1 \\ >}} \frac{x + \sqrt{x^2 - 1} - 1}{x - 1} = \lim_{\substack{x \to 1 \\ >}} \left(1 + \frac{\sqrt{x^2 - 1}}{x - 1}\right)$$

$$= \lim_{\substack{x \to 1 \\ > }} 1 + \frac{x + 1}{\sqrt{x^2 - 1}} = +\infty$$

$$car \lim_{\substack{x \to 1 \\ >}} (x+1) = 2 \ et \ \lim_{\substack{x \to 1 \\ >}} \frac{1}{\sqrt{x^2 - 1}} = +\infty$$

$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{h(x) - h(1)}{x - 1} = +\infty \text{ donc hn'est pas dérivable à droite en } 1$$

Par conséquent, (C) admet une demi-tangente verticale au point d'abscisse 1. 3.

$$\forall x < -1, h(x) = \frac{[x + \sqrt{x^2 - 1}][x - \sqrt{x^2 - 1}]}{x - \sqrt{x^2 - 1}} = \frac{1}{x - \sqrt{x^2 - 1}}$$

$$On\ a: \lim_{x\to -\infty} \sqrt{x^2-1} = +\infty\ car\ \lim_{x\to -\infty} (x^2-1) = +\infty\ et\ \lim_{x\to +\infty} \sqrt{x} = +\infty$$

$$Comme \lim_{x \to -\infty} (-\sqrt{x^2 - 1}) = -\infty \ et \lim_{x \to -\infty} x = -\infty \ donc \lim_{x \to -\infty} \left(x - \sqrt{x^2 - 1} \right) = -\infty$$

Par suite
$$\lim_{x \to -\infty} \frac{1}{x - \sqrt{x^2 - 1}} = 0$$
; Ainsi, $\lim_{x \to -\infty} h(x) = 0$

D'où la droite (OI) est asymptote à (C) en $-\infty$.

4.a)

$$Ona: \lim_{x \to +\infty} \sqrt{x^2 - 1} = +\infty \ car \lim_{x \to +\infty} (x^2 - 1) = +\infty \ et \lim_{y \to +\infty} \sqrt{y} = +\infty$$

$$Comme \lim_{x \to +\infty} \sqrt{x^2 - 1} = +\infty \ et \lim_{x \to +\infty} x = +\infty \ alors \lim_{x \to +\infty} \left(x + \sqrt{x^2 - 1} \right) = +\infty$$

$$Ainsi, \lim_{x \to +\infty} h(x) = +\infty$$

b) Calculons
$$\lim_{x\to+\infty} [h(x)-2x]$$

$$\forall x > 1, \quad h(x) - 2x = \sqrt{x^2 - 1} - x = \frac{\left[\sqrt{x^2 - 1} - x\right]\left[\sqrt{x^2 - 1} + x\right]}{x + \sqrt{x^2 - 1}} = \frac{-1}{x + \sqrt{x^2 - 1}}$$

On
$$a : \lim_{x \to +\infty} x + \sqrt{x^2 - 1} = +\infty \ d'où \lim_{x \to +\infty} \frac{-1}{x + \sqrt{x^2 - 1}} = 0$$
.

Ainsi,
$$\lim_{x \to +\infty} [h(x) - 2x] = 0$$
.

D'où la droite (D) d'équation y = 2x est asymptote à (C) en $+\infty$.

- c) Etudions le signe de h(x) 2x.
- Pour tout $x \in \frac{1}{2}$; 1[, on $a : h(x) 2x = \sqrt{1 x^2} x$.

$$h(x) - 2x \le 0 \Leftrightarrow \sqrt{1 - x^2} \le x \Leftrightarrow \begin{cases} 1 - x^2 \ge 0 \\ x \ge 0 \\ 1 - x^2 < x^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} -1 \leq x \leq 1 \\ x \geq 0 \\ 1 - 2x^2 \leq 0 \end{cases} \Leftrightarrow \begin{cases} -1 \leq x \leq 1 \\ x \geq 0 \\ x \in \left] -\infty; -\frac{\sqrt{2}}{2} \right] \cup \left[\frac{\sqrt{2}}{2}; +\infty \right[\end{cases} \text{donc, } h(x) - 2x \leq 0 \Leftrightarrow x \in \left[\frac{\sqrt{2}}{2}; 1 \right]$$

• Pour tout $x \in [1; +\infty[$, on a:

$$h(x) - 2x = \sqrt{x^2 - 1} - x = \frac{\left[\sqrt{x^2 - 1} - x\right]\left[\sqrt{x^2 - 1} + x\right]}{x + \sqrt{x^2 - 1}} = \frac{-1}{x + \sqrt{x^2 - 1}}$$

Pour tout $x \in [1; +\infty[, \sqrt{x^2 - 1} \ge 0 \text{ et } x > 0 \text{ donc} \forall x \in [1; +\infty[, \sqrt{x^2 - 1} + x > 0.$ Par suite, pour tout $x \in [1; +\infty[, h(x) - 2x < 0.$

Ainsi: $\forall x \in \left| \frac{\sqrt{2}}{2} \right|$; $1 \left[et \ \forall x \in [1; +\infty[, h(x) - 2x < 0] \right]$.

On en déduit que (C) est au-dessous de (D) sur $\left| \frac{\sqrt{2}}{2} \right|$; $+\infty$

5. a)
$$\forall x \in]-\infty$$
; $-1[\cup]1$; $+\infty[,h'(x)=1+\frac{2x}{2\sqrt{x^2-1}}=1+\frac{x}{\sqrt{x^2-1}}]$

 $\forall x \in]1; +\infty[, h'(x) > 0 \text{ donc hest strictement croissante sur}]1; +\infty[.$

$$\forall x \in]-\infty$$
; $-1[, h'(x) = \frac{\sqrt{x^2-1}+x}{\sqrt{x^2-1}} . \forall x \in]-\infty$; $-1[,\sqrt{x^2-1}>0 \ donc \ le \ signe \ de \ h'(x)$

est celui de $\sqrt{x^2 - 1} + x$. Or $|x| > \sqrt{x^2 - 1}$, donc pour $x \in]-\infty$; $-1[, -x > \sqrt{x^2 - 1},$

 $d'où\ pour\ x\in]-\infty\ ; -1[,\sqrt{x^2-1}+x<0.$

Donc $\forall x \in]-\infty; -1[, h'(x) < 0$ et par suite h est strictement décroissante sur] − ∞ ; −1[.

On conclut donc que h est strictement décroissante sur] $-\infty$; -1[et strictement croissante sur]1; $+\infty$ [.

b)
$$\forall x \in]-1$$
; 1[, $h'(x) = 1 - \frac{2x}{2\sqrt{1-x^2}} = 1 - \frac{x}{\sqrt{1-x^2}}$

donc $\forall x \in]-1; 0], h'(x) > 0.$

$$\forall x \in]0; 1[, h'(x) = \frac{\sqrt{1-x^2}-x}{\sqrt{1-x^2}}$$

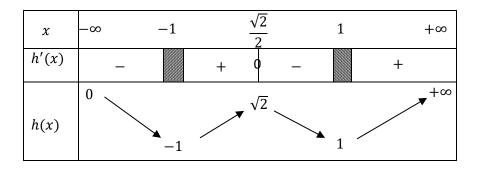
 $\forall x \in]0; 1[,\sqrt{1-x^2}>0 \ donc \ le \ signe \ de \ h'(x)est \ celui \ de \ \sqrt{1-x^2}-x.$

$$h'(x) \le 0 \Leftrightarrow \sqrt{1-x^2} - x \le 0 \Leftrightarrow \sqrt{1-x^2} \le x \Leftrightarrow x \in \left[\frac{\sqrt{2}}{2}; 1\right]$$
. (D'après la question 4.c.))

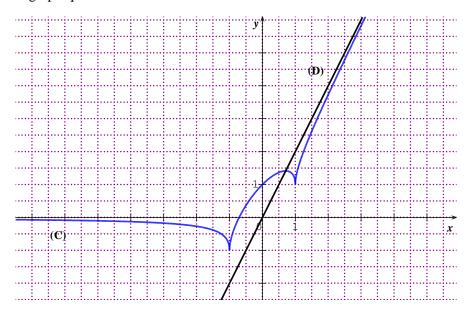
d'où $\forall x \in \left[0; \frac{\sqrt{2}}{2}\right]$; $h'(x) \ge 0$.

Donc h est décroissante sur l'intervalle $\left[\frac{\sqrt{2}}{2};1\right]$ et croissante sur $\left[-1;\frac{\sqrt{2}}{2}\right]$.

c)Tableau des variations de h



6. Représentation graphique



7.a) h est continue et strictement décroissante sur $]-\infty$; -1]. k étant la restriction de h à $]-\infty$; -1] donc k est continue et strictement décroissante sur $]-\infty$; -1].

D'où k réalise une bijection de $]-\infty$; -1] sur $k(]-\infty$; -1]) = [-1;0[.

b)
$$k(-\sqrt{2}) = 1 - \sqrt{2}$$
.

c)
$$k(-\sqrt{2}) = 1 - \sqrt{2}$$
 et $k'(-\sqrt{2}) = 1 - \sqrt{2}$. Comme $k'(-\sqrt{2}) \neq 0$ donc k^{-1} est dérivable en $1 - \sqrt{2}$ et on a : $(k^{-1})'(1 - \sqrt{2}) = \frac{1}{1 - \sqrt{2}} = -1 - \sqrt{2}$.

Exercice 3

Le plan est rapporté à un repère orthonormé (O, I, J).

Soit f la fonction définie de \mathbb{R} vers \mathbb{R} par : $f(x) = \tan\left(\frac{\pi}{2}x\right)$.

On note (C) la courbe représentative def.

- 1. Détermine, D_f , l'ensemble de définition de la fonction f.
- 2. a) Justifie que f est périodique de période 2.
 - b) Justifie que *f* est impaire.
 - c) Démontre que la droite d'équation x = 1 est une asymptote à (C).

- 3. a) Démontre que, $\forall x \in D_f, f'(x) = \frac{\pi}{2}(1 + tan^2(\frac{\pi}{2}x))$.
 - b) Dresse le tableau de variation de f sur [0; 1[.
- 4. Trace (C) sur [0; 1[puis sur]-3; 3[.

Solution

1. Détermine D_f

$$x \in D_f \iff \frac{\pi}{2}x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \iff x \neq 1 + 2k, k \in \mathbb{Z}$$

 $\text{Donc}D_f = \mathbb{R} \setminus \{1 + 2k\}, k \in \mathbb{Z}$

2. a) Justifions que f est périodique de période 2. Pour tout $x \in \mathbb{R} \setminus \{1+2k\}, k \in \mathbb{Z} \text{ on a}: x \neq 1+2k, k \in \mathbb{Z}$ Donc $x+2 \neq 3+2k, k \in \mathbb{Z}; x+2 \neq 1+2k', k' \in \mathbb{Z};$ D'où pour tout $x \in \mathbb{R} \setminus \{1+2k\}, k \in \mathbb{Z}, x+2 \in \mathbb{R} \setminus \{1+2k\}, k \in \mathbb{Z}$ $f(x+2) = \tan\left(\frac{\pi}{2}(x+2)\right) = \tan\left(\frac{\pi}{2}x+\pi\right) = \tan\left(\frac{\pi}{2}x\right)$ f(x+2) = f(x), donc f est périodique de période 2.

b) Justifions que f est impaire.

Pour tout $x \in \mathbb{R} \setminus \{1 + 2k\}, k \in \mathbb{Z}$ on $a : x \neq 1 + 2k, k \in \mathbb{Z}$ Donc $-x \neq -1 - 2k, k \in \mathbb{Z}; -x \neq 1 - 1 - 1 - 2k, k \in \mathbb{Z}$ D'où $-x \neq 1 + 2(-1 - k), k \in \mathbb{Z}$ c'est-à-dire $-x \neq 1 + 2k', k' \in \mathbb{Z}$ D'où pour tout $x \in \mathbb{R} \setminus \{1 + 2k\}, k \in \mathbb{Z}, -x \in \mathbb{R} \setminus \{1 + 2k\}, k \in \mathbb{Z}$ $f(-x) = \tan\left(-\frac{\pi}{2}x\right) = -\tan\left(\frac{\pi}{2}x\right)$ f(-x) = -f(x), donc fest impaire.

c) Démontrons que la droite d'équation x = 1 est une asymptote à (C).

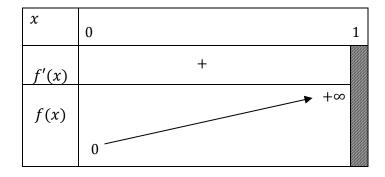
$$\lim_{\substack{x \to 1 \\ x \to 1}} f(x) = \lim_{\substack{x \to 1 \\ x \to 1}} \tan\left(\frac{\pi}{2}x\right) = \lim_{\substack{x \to \pi \\ x \to 2}} \tan(X) = +\infty$$
et
$$\lim_{\substack{x \to 1 \\ x \to 1 \\ >}} f(x) = \lim_{\substack{x \to 1 \\ x \to 2}} \tan\left(\frac{\pi}{2}x\right) = \lim_{\substack{x \to \pi \\ x \to 2}} \tan(X) = -\infty$$

Donc la droite d'équation x = 1 est une asymptote à (C).

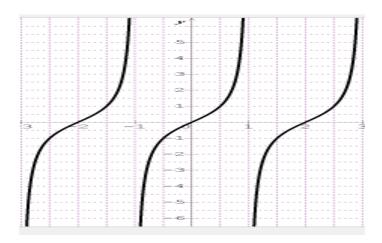
3. a) Démontrons que, $\forall x \in D_f, f'(x) = \frac{\pi}{2}(1 + tan^2(\frac{\pi}{2}x))$. $\forall x \in D_f, f'(x) = (\frac{\pi}{2}x)'(1 + tan^2(\frac{\pi}{2}x)) = \frac{\pi}{2}(1 + tan^2(\frac{\pi}{2}x))$.

b) Dressons le tableau de variation de f sur [0; 1[.

 $\forall x \in D_f, f'(x) > 0$ donc f est strictement croissante sur [0; 1].



4. Traçons (C) sur [0; 1[puis sur]-3; 3[.



C. SITUATIONS COMPLEXES

Situation 1

En visite dans une usine de fabrication et de commercialisation de sachets de poudre de cacao des élèves d'une classe de Terminale scientifique reçoivent les informations suivantes :

« La capacité journalière de production de l'usine est comprise entre 1 000 et 5 000 sachets. Toute la production journalière est commercialisée. Une étude a révélé que le bénéfice journalier, exprimé en millions de francs CFA, réalisé pour la production et la vente de x milliers de sachets est modélisé sur l'intervalle [1; 5] par la fonction B définie par : $B(x) = -\frac{1}{3}x^3 + 9x + 2$ ».

Le Directeur de l'usine veut accroître le bénéfice de l'entreprise. N'ayant pas de personnel qualifié, il te demande le nombre de sachets à produire en un jour, à l'unité près, pour que l'entreprise réalise un bénéfice maximal.

En argumentant, détermine le nombre de sachets de poudre de cacao à produire pour obtenir un bénéfice maximal.

Solution

Pour répondre à la préoccupation du Directeur de l'usine,

- J'étudie les variations de la fonction B modélisant le bénéfice journalier de l'usine.
- Je détermine la dérivée de B
- J'étudie le signe de la dérivée de B
- Je détermine le zéro de la dérivée de B sur l'intervalle
- Je donne le nombre de sachets de poudre de cacao à produire pour obtenir le bénéfice journalier maximal de l'usine.

Le bénéfice journalier, exprimé en millions de francs CFA, réalisé pour la production et la vente de x milliers de sachets est modélisé sur l'intervalle [1;5] par la fonction B définie par :

$$B(x) = -\frac{1}{3}x^3 + 9x + 2$$
. Etudions les variations de B.

- Dérivée de B :

$$B'(x) = -x^2 + 9 = -(x - 3)(x + 3)$$

- Signe de la dérivée de B

х	1	3		5
B'(x)	_	0	+	

Pour
$$x \in [1; 5], x + 3 > 0$$
 donc B'(x) a le
même signe que $-(x - 3)$. Or
 $-(x - 3) \ge 0 \Leftrightarrow x - 3 \le 0$

$$\Leftrightarrow x \le 3$$
Donc pour $x \in [1; 3]$, $B'(x) \ge 0$ et pour $x \in [3; 5]$, $B'(x) \le 0$

- Les variations de la fonction B.
 B est croissante sur l'intervalle [1; 3] et décroissante sur l'intervalle [3; 5].
- B atteint son maximum en 3. Ce maximum est B(3) = 20.

Le nombre de sachets de poudre de cacao à produire pour obtenir le bénéfice journalier maximal de l'usine est 3000.

Le bénéfice journalier dans ce cas est d'environ 20 millions.

D. EXERCICES CORRIGES

Exercice 1

f est la fonction continue sur \mathbb{R} et définie par : $\begin{cases} f(x) = 1 - x^2 \text{ si } x \in]-\infty; -1[\\ f(x) = \frac{2x+2}{x+2} \text{ si } x \in [-1; +\infty[$

Etudie la dérivabilité de f en -1.

Solution

Dérivabilité de f à gauche en -1 :

$$\lim_{\substack{x \to -1 \\ <}} \left(\frac{f(x) - f(-1)}{x + 1} \right) = \lim_{\substack{x \to -1 \\ <}} \left(\frac{1 - x^2 - 0}{x + 1} \right) = \lim_{\substack{x \to -1 \\ <}} (1 - x) = 2 \text{ donc } f \text{ est dérivable à gauche en -1 et}$$

$$f'_g(-1) = 2.$$

Dérivabilité de f à droite en -1 :

$$\lim_{\substack{x \to -1 \\ > \\ f'_d(-1) = 2}} \left(\frac{f(x) - f(-1)}{x + 1} \right) = \lim_{x \to -1} \left(\frac{\frac{2x + 2}{x + 2} - 0}{x + 1} \right) = \lim_{x \to -1} \left(\frac{\frac{2}{x + 2}}{x + 2} \right) = 2 \text{ donc } f \text{ est dérivable à droite en -1 et}$$

On a $f'_{q}(-1) = f'_{d}(-1)$ par suite f est dérivable en -1.

Exercice 2

k est une fonction dérivable sur un intervalle [a;b] telle que $\forall x \in [a;b]$, |k'(x)| < 0,2. Justifie que $k(b) \in]k(a) - 0,2(b-a); k(a) + 0,2(b-a)[$.

SOLUTION

k est une fonction dérivable sur un intervalle [a;b] telle que $\forall x \in [a;b]$, |k'(x)| < 0.2.

D'après l'inégalité des accroissements finis |k(b) - k(a)| < 0.2(b - a).

Par suite :
$$-0.2(b-a) < k(b) - k(a) < 0.2(b-a)$$

$$k(a) - 0.2(b - a) < k(b) < k(a) + 0.2(b - a)$$

Donc $k(b) \in [k(a) - 0.2(b - a); k(a) + 0.2(b - a)].$

Exercice 3

Soit *n* un entier naturel.

Démontre par récurrence que : $\forall x \in \mathbb{R}$, $cos^{(n)}(x) = cos\left(x + n\frac{\pi}{2}\right)$.

Solution

Pour
$$n = 0$$
: $\forall x \in \mathbb{R}$, $cos^{(0)}(x) = cos(x) = cos\left(x + 0 \times \frac{\pi}{2}\right)$.

Supposons l'égalité à un rang $k; k \in \mathbb{N}$.

Au rang k + 1,

$$\forall x \in \mathbb{R}, \ \cos^{(k+1)}(x) = \left(\cos^{(k)}\right)'(x) = \cos'\left(x + k\frac{\pi}{2}\right) = -\sin\left(x + k\frac{\pi}{2}\right) = \cos\left(x + k\frac{\pi}{2} + \frac{\pi}{2}\right).$$

$$= \cos\left(x + (k+1)\frac{\pi}{2}\right).$$

Donc
$$\forall x \in \mathbb{R}$$
, $cos^{(n)}(x) = cos\left(x + n\frac{\pi}{2}\right)$.

Soit la bijection dérivable $f: \int_{\substack{-\frac{\pi}{2},\frac{\pi}{2} \\ x \mapsto \tan(x)}}^{\frac{\pi}{2},\frac{\pi}{2}} \to \mathbb{R}$ et φ sa bijection réciproque.

- 1. Démontre que φ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, \varphi'(x) = \frac{1}{1+x^2}$.
- 2. Démontre que $\forall x \in]0; +\infty[, \varphi(x) + \varphi(\frac{1}{x}) = \frac{\pi}{2}]$
- 3. Détermine $\varphi(x) + \varphi\left(\frac{1}{x}\right)$ pour $x \in]-\infty$; 0[.

Solution

1.
$$f$$
 est une bijection dérivable sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ et $\forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, $f'(x) = 1 + tan^2(x)$.

$$\forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, f'(x) > 0 \text{ donc } \varphi \text{ est dérivable sur } \mathbb{R} \text{ et } \forall x \in \mathbb{R}, \varphi'(x) = \frac{1}{f'(\varphi(x))}$$

Or
$$\forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[f'(x) = 1 + f^2(x). \text{ Donc } \forall x \in \mathbb{R}, f'(\varphi(x)) = 1 + f^2(\varphi(x)) = 1 + x^2.$$

D'où
$$\forall x \in \mathbb{R}, \varphi'(x) = \frac{1}{1+x^2}$$

2. Posons:

$$\forall x \in]0; +\infty[, u(x) = \varphi(x) + \varphi(\frac{1}{x})]$$

Dérivons la fonction u

$$\forall x \in]0; +\infty[, u'(x) = \varphi'(x) - \frac{1}{x^2} \varphi'(\frac{1}{x}) = \frac{1}{1+x^2} - \frac{1}{x^2} \times \frac{1}{1+(\frac{1}{x})^2} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

 $\forall x \in]0; +\infty[, u'(x) = 0 \text{ donc la fonction } u \text{ est constante sur }]0; +\infty[.$

Par suite
$$\forall x \in \]0; +\infty[, u(x) = u(1) = \varphi(1) + \varphi(\frac{1}{1}) = 2 \times \varphi(1) = 2 \times \frac{\pi}{4} = \frac{\pi}{2}$$

3. f étant impaire, φ est impaire.

$$x \in]-\infty; 0[\iff -x \in]0; +\infty[.$$

$$\varphi(x) + \varphi\left(\frac{1}{x}\right) = -\varphi(-x) - \varphi\left(-\frac{1}{x}\right) = -\left(\varphi(-x) + \varphi\left(-\frac{1}{x}\right)\right) = -\frac{\pi}{2}.$$

Donc
$$\varphi(x) + \varphi\left(\frac{1}{x}\right) = -\frac{\pi}{2}$$
. pour $x \in]-\infty; 0[$.

Exercice 5

f est la fonction de IR vers IR définie par : $f(x) = \sqrt{\frac{1-x}{1+x}}$. On note (C) sa courbe représentative dans le plan muni d'un repère orthonormé (O, I, J). L'unité graphique est 4 cm.

- 1. Détermine l'ensemble de définition de f.
- 2. Etudie la dérivabilité de f en 1 puis interprète graphiquement le résultat.
- 3. Calcule la limite de f en -1 puis interprète graphiquement le résultat.
- 4. Etudie les variations de f et dresse son tableau de variation.

- 5. Trace la courbe (C).
- 6. Démontre que f réalise une bijection de]-1; 1] sur $[0; +\infty[$.
- 7. Justifie que la bijection réciproque f^{-1} de f est dérivable en 1 et calcule $(f^{-1})'(1)$.
- 8. Trace la courbe représentative (C') de f^{-1} sur le même graphique que (C).

Solution

$$1.D_f = \{ x \in IR / 1 + x \neq 0 \text{ et } \frac{1-x}{1+x} \geq 0 \}.$$

x	- ∞	-1		1	
					+∞
1-x	+		+	0	_
1+x	_	0	+		+
$\frac{1-x}{1+x}$	_		+	0	_

 $Donc:D_f =]-1;1].$

2. Dérivabilité de f en 1.

$$\lim_{\substack{x \to 1 \\ <}} \frac{f(x) - f(1)}{x - 1} = \lim_{\substack{x \to 1 \\ <}} \frac{\sqrt{\frac{1 - x}{1 + x}}}{x - 1} = \lim_{\substack{x \to 1 \\ <}} \frac{\sqrt{\frac{1 - x}{1 + x}}\sqrt{\frac{1 - x}{1 + x}}}{(x - 1)\sqrt{\frac{1 - x}{1 + x}}} = \lim_{\substack{x \to 1 \\ <}} \frac{-1}{(x + 1)\sqrt{\frac{1 - x}{1 + x}}} = -\infty$$

$$car \lim_{x \to 1} (x+1) \sqrt{\frac{1-x}{1+x}} = 0 \ et \ (x+1) \sqrt{\frac{1-x}{1+x}} \ge 0 \ pour \ x \in]-1;1]$$

Ainsi f n'est pas dérivable en 1 car $\lim_{\substack{x \to 1 \\ <}} \frac{f(x) - f(1)}{x - 1}$ n'est pas finie.

Interprétation graphique

(C) admet une demi-tangente verticale au point d'abscisse 1.

3. Limite en -1

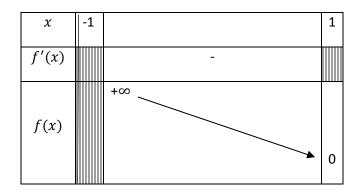
$$\lim_{\substack{x \to -1 \\ >}} \frac{1}{1+x} = +\infty \ et \ \lim_{\substack{x \to -1 \\ >}} (1-x) = 2 \ donc \ \lim_{\substack{x \to -1 \\ >}} \frac{1-x}{1+x} = +\infty.$$

Par ailleurs
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$
, $donc : \lim_{\substack{x \to -1 \ >}} \sqrt{\frac{1-x}{1+x}} = +\infty$

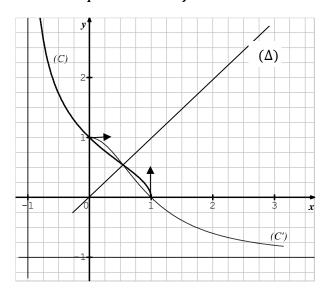
D'où $\lim_{x \to -1} f(x) = +\infty$. La droite (D) d'équation x = -1 est asymptote à (C).

4.
$$f$$
 est dérivable sur $]-1;1[.Pour tout \ x \in]-1;1[,f'(x)] = \frac{\frac{-(x+1)-(1-x)}{(1+x)^2}}{2\sqrt{\frac{1-x}{1+x}}} = \frac{-1}{(1+x)^2\sqrt{\frac{1-x}{1+x}}}$

 $\forall x \in]-1; 1[,-1 < 0 \text{ et } (x+1)^2 \sqrt{\frac{1-x}{1+x}} > 0. \text{ Donc } \forall x \in]-1; 1[, f'(x) < 0. \text{ f est donc strictement décroissante sur }]-1; 1[,$



5. Courbe représentative de f.



6. f est continue et strictement décroissante sur]-1;1] donc f réalise une bijection de]-1;1] sur $f(]-1;1])=[0;+\infty[$.

7. On a: f(0) = 1 et f'(0) = -1; comme $f'(0) \neq 0$ donc la bijection réciproque f^{-1} de f est dérivable en l et on $a: (f^{-1})'(1) = \frac{1}{f'(0)} = -1$.

8. Les courbes représentatives (C') et (C) sont symétriques par rapport à la droite (Δ) d'équation y = x (voir figure).

IV. EXERCICES

I – EXERCICES DE FIXATION

f est une fonction dérivable sur l'intervalle I. Dans chacun des cas suivants, calcule f'(x) pour tout x de I.

a)
$$f(x) = -3x^3 + 4x^2 - 7x + 2$$
, I=IR;

b)
$$f(x) = \frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2} - x + 1$$
, I = IR;

c)
$$(x) = 3x - \frac{2}{x} + \frac{1}{x^2} - \frac{7}{x^3}, I =]0; +\infty[;d) f(x) = 2x^2 \sqrt{x}, I = [x]$$

e)
$$f(x) = \frac{2x-3}{x+1}$$
, $I =]-\infty; -1[$;

f)
$$f(x) = (x^2 - 3x + 1)^5$$
, I= IR;

g)
$$f(x) = \sqrt{4x - 1}$$
, $I = \frac{1}{4}$; $+\infty$

h)
$$f(x) = \frac{2}{(x-1)^2}$$
, $I =]1; +\infty[;$

i)
$$f(x) = \sqrt{x^2 - 3x + 5}$$
, I=IR;

j)
$$f(x) = \frac{2}{\sqrt{3x+1}}, I = \left[\frac{-1}{3}; +\infty \right[;$$

l) $f(x) = \frac{2}{(1-2x)^2}, I = \left[-\infty; \frac{1}{2} \right[;$

k)
$$f(x) = x\cos 2x$$
, I= IR;

1)
$$f(x) = \frac{2}{(1-2x)^2}$$
, $I = \left] -\infty; \frac{1}{2} \right[$

m)
$$f(x) = \frac{x}{\sqrt{x^2+1}}$$
, I=IR;

n)
$$f(x) = x^3(1-x)^2$$
, I=IR;

o)
$$f(x) = \sin x \cos^3 x$$
, I=IR;

p)
$$f(x) = \frac{x}{2} + 1 - \frac{2}{(x-1)^2}, I =]-\infty; 1[.$$

Exercice 2

f est la fonction définie sur $]-\infty;-2] \cup [1;+\infty[$ par : $f(x)=\sqrt{x^2+x-2}$ Etudie la dérivabilité de f en -2 et en 1.

Exercice 3

Démontre que :

1.
$$\forall x \in [0; \frac{\pi}{2}[, tanx \ge x].$$

2.
$$\forall x \in]0; +\infty[$$
, on a $\frac{1}{2\sqrt{x+1}} \le \sqrt{x+1} - \sqrt{x} \le \frac{1}{2\sqrt{x}}$

Exercice 4

Soit la fonction $f: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to [-1;1]$

1. Démontre que f admet une bijection réciproque φ

2. Démontre que : $\forall x \in]-1; 1[, \varphi'(x) = \frac{1}{\sqrt{1-x^2}}]$

II – EXERCICES DE RENFORCEMENT /APPROFONDISSEMENT

Dans les exercices qui suivent, on note (C) la courbe représentative de f dans le plan muni d'un repère orthonormé (O, I, J).

Exercice 5

f est la fonction définie sur IR par : f(x) = x|x-3|+2.

- 1. Etudie la continuité de f en 3.
- 2. Etudie la dérivabilité de f en 3. Interprète graphiquement le résultat.
- 3. Etudie les variations de f et dresse son tableau de variation.
- 4. Trace (C).

Exercice 6

f est la fonction définie sur $[0; +\infty[par:f(x) = x^2 - 2\sqrt{x}]$

1. Etudie la dérivabilité de f en 0 puis interpréter graphiquement le résultat.

- 2. Calcule les limites de f(x) et $\frac{f(x)}{x}$ lorsque x tend vers $+\infty$ puis interprète graphiquement les résultats
- 3. Etudie les variations de f et dresse son tableau de variation.
- 4. Trace (C).

f est la fonction de IR vers IR définie par: $f(x) = \frac{x}{|x|+1}$

- 1. Précise l'ensemble de définition de f
- 2. Etudie la continuité de f en 0.
- 3. Démontre que (C) admet au point d'abscisse 0 une tangente dont on précisera une équation.
- 4. Etudie la parité de f et en donner une conséquence graphique.
- 5. Calcule la limite de f en $+\infty$. Interpréte graphiquement le résultat.
- 6. Etudie les variations de f sur $[0; +\infty[$ et dresse le tableau de variation de f.
- 7. Trace la courbe (C).

Exercice 8

f est la fonction définie sur IR-{-1} par : $f(x) = \frac{x^2 + |x-2|}{x+1}$

- 1. Etudie la continuité de f en 2.
- 2. Etudie la dérivabilité de f en 2. Interprète graphiquement les résultats.
- 3. Calcule les limites de f aux bornes de son ensemble de définition.
- 4. Etudie les variations de f et dresse son tableau de variation.

5.

- a) Démontre que les droites (D₁) et (D₂) d'équations respectives y = x 2 et y = x sont asymptotes à (C) respectivement en $-\infty$ et en $+\infty$.
- b) Etudie la position de (C) par rapport à (D_1) sur $]-\infty;-1[\cup]-1;2]$.
- c) Etudie la position de (C) par rapport à (D_2) sur $[2; +\infty[$.
- 6. Trace (D_1) , (D_2) et (C).

Exercice 9

f est la fonction de IR vers IR définie par : $f(x) = \sqrt{x^2 + 3x + 2}$.

Partie A

- 1. Justifie que l'ensemble de définition de f est $]-\infty;-2]U[-1;+\infty[$.
- 2. Etudie la dérivabilité de f en -1 et en -2 puis interpréte graphiquement les résultats.
- 3. Calcule les limites de f en $-\infty$ et en $+\infty$.
- 4. Etudie les variations de f et dresse son tableau de variation.
- 5. Démontre que les droites (D_1) : $y = -x \frac{3}{2}$ et (D_2) : $y = x + \frac{3}{2}$ sont asymptotes à (C) respectivement en $-\infty$ et en $+\infty$.
- 6. Démontre que la droite (Δ) d'équation $x = -\frac{3}{2}$ est un axe de symétrie de (C).
- 7. Donne une équation de la tangente (T) à (C) au point d'abscisse 0.
- 8. Trace (D_1) , (D_2) , (T) et (C).

Partie B

Soit g la restriction de f à $[-1; +\infty]$.

- 1. Démontre que g est une bijection de $[-1; +\infty]$ sur $[0; +\infty]$.
- 2. Justifie que la bijection réciproque g^{-1} de g est dérivable en $\sqrt{2}$ etcalcule $(g^{-1})'(\sqrt{2})$.

f est la fonction sur définie sur IR par : $f(x) = 1 + \frac{x}{\sqrt{1+x^2}}$

- 1. Démontre que f est une bijection de IR sur un intervalle K que l'on précisera.
- 2. Justifie que la bijection réciproque f^{-1} de f est dérivable en 1 et calculer $(f^{-1})'(1)$.

3.

- a) Trace (C).
- b) Trace (C') la courbe représentative de f^{-1} .

Exercice 11

f est la fonction définie sur [0;1] par : $f(x) = x - 2\sqrt{x} + 1$.

On prendra pour unité graphique 10 cm.

Etudier la dérivabilité de f en 0.

- 1. Interprète graphiquement le résultat.
- 2. Démontre que f est une bijection de [0;1] sur [0;1]
- 3. Démontre que pour tout $x \in [0; 1], f \circ f(x) = x$.
- 4. Déduis en la bijection réciproque de f.
- 5. Construis (C).

Exercice 12

f est la fonction de IR vers IR définie par : $f(x) = (2-x)\sqrt{4-x^2}$.

L'unité graphique est 2cm.

- 1. Etudie la dérivabilité de f en -2 et en 2 puis interprète graphiquement les résultats.
- 2. Etudie les variations de f et dresse son tableau de variation.
- 3. Donne une équation de la tangente (T) à (C) au point d'abscisse 0.
- 4. Trace (T) et (C).

Exercice 13

f est la fonction de IR vers IR définie par : $f(x) = \sqrt{x^2 + 1} - x$.

- 1. Calcule la limite de f en $+\infty$. Interprète graphiquement le résultat.
- 2. Calcule la limite de f en $-\infty$.

3.

- a) Démontre que la droite (D) d'équation y = -2x est asymptote à (C) en $-\infty$.
- b) Etudie la position de (C) par rapport à (D).
- 4. Etudie les variations de f et dresse son tableau de variation.
- 5. Trace (D) et (C).

Exercice 14

f est la fonction définie sur $]-\infty;-1] \cup [1;+\infty[$ par :

$$f(x) = -\frac{x}{2} + \frac{\sqrt{x^2 - 1}}{x}$$

Partie A

g est la fonction définie sur]1; $+\infty$ [par : $g(x) = 2 - x^2 \sqrt{x^2 - 1}$

- 1. Calcule la limite de g en $+\infty$.
- 2. Etudie les variations de *g* et dresse son tableau de variation.

3.

a) Démontre que l'équation $x \in]1; +\infty[$, g(x) = 0 admet une solution unique α et que $1 < \alpha < 2$.

b) Donne une valeur approchée de
$$\alpha$$
 à 10^{-1} près.
4. Justifie que :
$$\begin{cases} \forall x \in]1; \alpha[, g(x) > 0 \\ \forall x \in]\alpha; +\infty[, g(x) < 0 \end{cases}$$

Partie B

- 1. Etudie la parité de f.
- 2.
- a) Calcule la limite de f en $+\infty$.
- b) Démontre que la droite (D) d'équation $y = -\frac{x}{2} + 1$ est asymptote à (C) en $+\infty$.
- c) Etudie la position de (C) par rapport à (D) sur $]1; +\infty[$.
- 3. Etudie la dérivabilité de f en 1 puis interprète graphiquement le résultat.
- a) Démontre que : ∀ x ∈]1; +∞[,f'(x) = ^{g(x)}/_{2x²√x²-1}
 b) Dresse le tableau de variation de f.
 5. Démontre que : f(α) = α/2 + 2/α³.